摘要:在本文中,我們研究了基于紅外熱成像的印制電路板故障檢測中的圖像配準(zhǔn)問題。為了提升印制電路板紅外熱成像的質(zhì)量,本文提出了一種新穎的預(yù)處理方法,該方法能夠保證圖像配準(zhǔn)的效果。由于印制電路板紅外熱成像與常見的圖像存在顯著差異,鮮有現(xiàn)有的圖像配準(zhǔn)研究專注于印制電路板紅外熱成像配準(zhǔn)。因此,本文對(duì)比了多種配準(zhǔn)算法,以尋找適用于不同檢測方法的印制電路板紅外熱成像配準(zhǔn)算法。結(jié)果顯示,基于互信息的配準(zhǔn)方法更加精確但計(jì)算量大,適用于熱成像序列檢測;而基于SIFT特征的配準(zhǔn)方法效率更高,但精度較低,適用于熱成像差分檢測方法。
1 引言
隨著技術(shù)的發(fā)展,印制電路板上的組件和電路正朝著精細(xì)化、高密度化和復(fù)雜化的方向發(fā)展。[1-3] 板子越復(fù)雜,成本也就越高。因此,在印制電路板的發(fā)展過程中,故障檢測與維護(hù)已經(jīng)成為我們必須面對(duì)的問題。傳統(tǒng)的手工檢測方法已經(jīng)難以滿足現(xiàn)今的檢測需求。作為一種非接觸式的測量方法,紅外熱成像檢測逐漸應(yīng)用于印制電路板故障檢測領(lǐng)域?;诩t外熱成像的印制電路板故障檢測主要包括三個(gè)步驟:熱源識(shí)別、特征提取及熱圖模式識(shí)別[4]。本文重點(diǎn)關(guān)注在熱源識(shí)別過程中的圖像配準(zhǔn)問題。由于現(xiàn)有的檢測方法都需要比較印制電路板正常工作狀態(tài)下和發(fā)生故障時(shí)的紅外熱成像中組件的狀態(tài),因此必須對(duì)這兩種狀態(tài)下的印制電路板紅外熱成像進(jìn)行配準(zhǔn),以實(shí)現(xiàn)組件的配準(zhǔn)。只有在兩張印制電路板的紅外熱成像圖完成配準(zhǔn)后,后續(xù)的檢測步驟才能進(jìn)行。印制電路板圖像的配準(zhǔn)效果將直接影響故障檢測的準(zhǔn)確性。
學(xué)者們對(duì)印制電路板的熱圖像配準(zhǔn)進(jìn)行了一系列的研究。在文獻(xiàn)[5]中,提出了一系列圖像配準(zhǔn)的方法。而在文獻(xiàn)[6]中,則使用了遺傳算法來實(shí)現(xiàn)印制電路板的熱圖像配準(zhǔn)。但是,現(xiàn)有的研究仍然缺乏針對(duì)性。因?yàn)橛≈齐娐钒鍩釄D像配準(zhǔn)是后續(xù)檢測的基礎(chǔ),所以有必要綜合考慮印制電路板熱圖像檢測方法和配準(zhǔn)方法,并根據(jù)不同的基于紅外熱成像的印制電路板檢測方法找到更合適的配準(zhǔn)方法。在本文中,研究了印制電路板熱圖像配準(zhǔn)的預(yù)處理和配準(zhǔn)方法。
2 問題描述
2.1 圖像配準(zhǔn)定義
圖像配準(zhǔn)意味著在相同場景和不同拍攝環(huán)境下,在多幅圖像之間建立對(duì)應(yīng)關(guān)系,以使多幅圖像之間的像素對(duì)齊[7-9]。兩幅圖像可能是在不同時(shí)間拍攝的,甚至可能來自不同的傳感器,并且相機(jī)可能處于不同的拍攝位置。從數(shù)學(xué)上講,兩幅圖像的配準(zhǔn)可以定義為:
I2(x,y)=L(F(I1(x,y)))
其中, I1 和 I2 分別代表需要配準(zhǔn)的圖像,例如,正常狀態(tài)下的印制電路板熱成像圖和故障狀態(tài)下的印制電路板熱成像圖。 和 分別表示這兩幅圖像在位置 上的灰度值,L?表示一維灰度變換函數(shù),而 F?表示二維空間幾何變換函數(shù)。
目前,有兩種常見的基于紅外熱成像的印制電路板故障檢測方法[10]:熱成像差分檢測方法和熱成像序列檢測方法。熱成像差分檢測方法通過從故障狀態(tài)下的印制電路板瞬態(tài)熱圖像中減去正常狀態(tài)下的印制電路板熱圖像來檢測組件故障。這種方法適用于故障實(shí)時(shí)預(yù)警,因?yàn)樗梢钥焖俣ㄎ缓惋@示故障。該方法的缺點(diǎn)是無法檢測那些隨著時(shí)間緩慢變化溫度的故障。故障檢測的準(zhǔn)確性直接取決于圖像配準(zhǔn)的準(zhǔn)確性,因此圖像配準(zhǔn)在差分檢測中起著重要作用。
另一種方法是熱成像序列檢測。首先,需要在正常工作條件下的印制電路板熱圖像序列和故障條件下工作的印制電路板熱圖像序列中識(shí)別出熱源。然后,需要從這兩個(gè)序列中提取各自組件的溫度變化信息。通過比較兩種溫度變化信息來檢測每個(gè)組件,確定是否存在故障。這種順序熱成像檢測方法用于識(shí)別正常工作狀態(tài)下和故障狀態(tài)下印制電路板熱圖像序列中的熱源,并提取正常工作狀態(tài)和故障狀態(tài)下的各組件溫度變化信息。通過比較這兩種變化信息來檢測每個(gè)組件是否出現(xiàn)故障。這種方法的優(yōu)點(diǎn)是可以檢測復(fù)雜的電路故障,而缺點(diǎn)是效率較低。組件配準(zhǔn)的準(zhǔn)確性將直接影響溫度變化信息的提取。因此,組件配準(zhǔn)在這種方法中也起到了重要的作用。
3 印制電路板紅外熱成像的預(yù)處理
印制電路板紅外熱成像具有高噪聲、低對(duì)比度和邊緣模糊的特點(diǎn)[11]。這些特性阻礙了特征信息的提取,并會(huì)影響印制電路板紅外熱成像的配準(zhǔn)。因此,在紅外熱成像檢測中對(duì)印制電路板熱圖像進(jìn)行預(yù)處理是必要的。
由于印制電路板紅外熱成像通常包含大量的椒鹽噪聲,中值濾波方法可以有效地去除椒鹽噪聲,因此采用此方法去除噪聲。
為了充分利用印制電路板熱圖像中的線條、角落等特征信息,可以使用Prewitt算子來提取印制電路板熱圖像中組件的邊緣輪廓信息,這可以銳化組件的邊緣。該算子的優(yōu)勢(shì)在于它不僅可以提取邊緣,還可以減少噪聲的影響。相應(yīng)的Prewitt算子的卷積模板和形式如下:
對(duì)于水平邊緣檢測,Prewitt算子的模板為:
其中 GX 和 是卷積運(yùn)算符,而 f(i,j)?表示成像。為了在印制電路板紅外熱成像中突出故障組件區(qū)域,可以使用直方圖均衡化方法來處理圖像。這種操作可以使組件區(qū)域變得更亮,而背景區(qū)域變得更暗,從而實(shí)現(xiàn)突出組件的目的。直方圖均衡化的變換公式如下:
其中 k=1,2,…,256,ks 意味著均衡化處理后的灰度值,而 代表直方圖均衡化前的成像灰度值。
在本文中,印制電路板熱圖像的增強(qiáng)和預(yù)處理如下:使用中值濾波去除噪聲,使用Prewitt算子銳化邊緣,使用直方圖均衡化來提高對(duì)比度。在本文中,使用添加了噪聲的印制電路板熱圖像來模擬實(shí)際獲取過程中的印制電路板熱圖像。實(shí)驗(yàn)結(jié)果如下所示。圖像平均灰度值、信息熵和方差有了顯著提高,而峰值信噪比、均方誤差則不理想。但是可以看出增強(qiáng)圖像的組件邊界更清晰,整體圖像質(zhì)量得到了改善,這證明了對(duì)印制電路板紅外熱成像的預(yù)處理提高了成像質(zhì)量。
圖1:增強(qiáng)效果的對(duì)比
表1:評(píng)價(jià)指標(biāo)的比較
指標(biāo) | 添加噪聲成像 | 預(yù)處理后成像 |
平均灰度值 | 120.6013 | 127.9997 |
信息熵 | 6.7328 | 7.0892 |
方差 | 4.68E+03 | 5.44E+03 |
均方誤差(MSE) | 24.8662 | 115.8539 |
峰值信噪比(PSNR) | 34.1747 | 27.4917 |
4 圖像配準(zhǔn)方法
4.1 基于互信息的配準(zhǔn)算法
互信息是一種數(shù)學(xué)定義,用來評(píng)估隨機(jī)變量之間的關(guān)聯(lián)性。它表示兩個(gè)隨機(jī)變量中的共有信息。由信息熵描述的互信息表達(dá)式如下[12]:
其中 H(X)?是 X 的熵, 是 的熵, 是 和 的聯(lián)合熵, 是給定 Y時(shí) X 的條件熵, 是給定 時(shí) 的條件熵。 和 是隨機(jī)變量,可以代表紅外熱成像圖像。
基于最大互信息理論,可以得出結(jié)論,當(dāng)故障印制電路板紅外熱成像與正常印制電路板紅外熱成像匹配時(shí),兩幅熱圖像的互信息值達(dá)到最大值。這解釋了為什么互信息可以用于圖像配準(zhǔn)。印制電路板紅外熱成像之間的互信息可以如下計(jì)算:
其中 ( p(x) ) 和 ( p(y) ) 分別代表紅外熱成像 ( X ) 和紅外熱成像 ( Y ) 的概率分布函數(shù),( p(x, y) ) 代表紅外熱成像 ( X ) 和紅外熱成像 ( Y ) 的聯(lián)合概率分布函數(shù)。所有這些都可以從兩幅紅外熱圖像的組合分布直方圖中獲得。公式的另一種表達(dá)方式是: